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The point of this paper is to show how ideas from percolation can be used to 
study the asymptotic behavior of some cellular automata systems. In particular, 
using these ideas, we prove that the Greenberg-Hastings and cyclic cellular 
automata models with three colors, threshold 2, and the L ~ neighborhood are 
uniformly asymptotically locally periodic in d~> 2 dimensions. We also show that 
every lattice point is eventually "controlled by a finite clock" in the standard 
Greenberg-Hastings and cyclic cellular automata models in two dimensions, 
which is a stronger description than the already known asymptotic behavior. 
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1. INTRODUCTION 

We begin by describing a large class of models  which can be collectively 
called generalized Greenbe rg -Has t ings  ( G H )  and cyclic cellular au toma ta  
(CCA)  models. All of these models  will have as their state space X =  
{0, 1 ..... k -  1 }za, where k is considered to be the number  of colors in the 
model.  In order  to define these models,  one needs to specify three 
parameters  (in addi t ion  to the dimension d), which are, respectively, the 
number  of colors  k, the ne ighborhood  set ~A p conta ining 0, and the 
threshold level 0, a posit ive integer. In all cases, these models  will be a con- 
t inuous (in the produc t  topo logy)  t rans la t ion- invar iant  mapping  from X of 
itself, something which is usually called a cellular automaton. Throughou t  
this paper ,  we will always let ~/,, denote  the configurat ion at time n, with of 
course ~/o being 1he initial configuration.  

The generalized G H  models  are extensions of the s tandard  G H  model,  
which was studied nonr igorous ly  in refs. 14 and 16 and r igorously in refs. 
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3, 7, 9, and 12. Similarly, the generalized CCA models extend the s tandard 
CCA model, which has been studied rigorously in refs. 5, 6, and 8. Other  
rigorous accounts dealing with these models can be found in refs. 2, 4, 10, 
13, and 15. Finally, results concerning the existence of nontrivial s ta t ionary 
distributions for r andom continuous-t ime versions of these models for 
certain parameter  values are obtained in ref. 1. 

First of all, the parameter  k, which is the number  of colors, determines 
what the state space X is (once the dimension d is set). For  G H ,  the 
updat ing rule is as follows. Each i e  { 1, 2 ..... k -  1 } automatical ly  becomes 
i +  1 (mod k) at the next stage. However,  a 0 at site x becomes a 1 at the 
next stage if and only if at least 0 of the sites in its neighborhood .# ' (x)  = 
x +./V" are in state 1 (this is where the two other parameters  .#" and 0 
enter). Otherwise, the 0 remains a 0. 

For  the CCA, an i~ {0, 1 ..... k -  1} at site x becomes i +  1 (mod k) at 
the next stage if and only if at least 0 of the sites in its ne ighborhood mr(x)  
are in state i +  1 (mod k). Otherwise, site x remains in state i. Therefore 
each state for the CCA model behaves like the 0 state for the G H  model. 
Throughout  this paper,  the term uniform product measure will mean the 
product  measure on {0, 1 ..... k - l }  za with each marginal  uniform on 
{0,1 ..... k - l } .  

D e f i n i t i o n  1.1.  {x~,xz ..... x,,} is called a path (relative to the 
parameter  JV') if x i+~e  . , U ( x i ) -  x i +  j I r  for i =  1,..., 17- 1. 

We now say a word about  the standard G H  model. This has three 
colors, threshold 1, and neighborhood set JV = {y: [lyll~ ~< 1 }, the usual L t 
neighborhood (where of course IlYlI~ is the sum of the absolute values of 
the coordinates of y). The s tandard CCA model is defined analogously. In 
ref. 3 it is proven that  uniform asymptotic local periodicity holds in the 
following sense. 

T h e o r e m  1.2.  For  the s tandard G H  model in d>~2 dimensions 
starting with uniform product  measure, each lattice point is eventually 
periodic, cycling at period 3 a.s. 

The proof  of this is identical to the proof  of the analogous theorem for 
CCA which was done earlier in ref. 8. The key idea is to note that  any 

0 1 2 

2 1 0 

which sits in a two-dimensional  sublattice of the configuration simply 
cycles at period 3 independent of the outside. Such cycles are examples of 
what are called clocks. If we initial distribution is uniform product  measure,  
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then the initial configuration will contain a clock somewhere a.s. F rom 
here, one proves Theorem 1.2 by showing that it is a deterministic fact that 
if a configuration contains such a clock somewhere, then every lattice point 
is eventually periodic, cycling at period 3. 

Our  first theorem here concerns this notion of uniform asymptotic 
local periodicity for a different set of  parameter values where the argument 
is more involved. 

T h e o r e m  1.3.  Consider the G H  or CCA model in d>~ 2 dimensions 
with three colors, threshold 2, and neighborhood set J r ' =  {y: IlYlI~ ~<1} 
(where IlYlI~ is the maximum of the absolute values of the coordinates of 
y). Then, if we start the system with uniform product  measure, each lattice 
point is eventually periodic, cycling at period 3 a.s. 

We first note that under the parameters in Theorem 1.3, 

1 0 1 

2 2 2 

1 0 1 

cycles at period 3 independent of the outside. This therefore plays the role 
here (as could other finite configurations with this property) that 

0 1 2 

2 1 0 

played in the standard G H  and CCA models. However, the proof  of 
Theorem 1.2 no longer works when the threshold is raised to 2 and Jt/" 
changes from {y: l ly l l l~<l}  to {y:llyJl~<l} and other methods are 
required. In particular, it is not a deterministic fact for this model that a 
configuration with the above structure in it is eventually periodic, cycling 
at period 3, at every lattice point. The following configuration for d =  2 
demonstrates this, as is easily verified, where ? can be taken to be any of 
O, l, or 2: 

. . . 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  

. . . 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  

... 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 . . .  

... 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 . . .  

... ? ) ? ? ? ? ? ? ? ? ? ? ? ? 7 . . .  

... ? ? ? ? ? ? 1 0 1 ? ? ? ? ? 7 . . .  

... ? ? 9 9 ? ? 2 2 2 ? ? ? ? ? 7 . . .  

... ? ? ? ? ? ? 1 0 1 ? ? ? ? ? ? . . .  

... ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .  
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It is believed that whenever the parameters are such that there exists 
a finite object which cycles at period k independent of the outside (see 
Definition 2.1), then every lattice point is eventually periodic (but not 
necessarily having period k), which one could call asymptotic (not 
necessarily uniform) local periodicity. There are cases where the above 
local periodicity is not uniform. Theorem 1.3 proves this conjecture for one 
set of parameter values together with a uniformity in the period. Computer 
simulations I~l~ indicated earlier that Theorem 1.3 is true. 

Our second theorem is the following, stronger version of Theorem 1.2, 
which states that every lattice point is "eventually controlled by some finite 
clock" in a precise sense. We need the following definition. 

D e f i n i t i o n  1.4. A self-avoiding path {Zo, zl ..... z,,=Zo} (except for 
z,,=Zo) is a clock for q for standard G H  or CCA if q(zi+i)=q(zi)+l 
(mod 3) for each i. 

We note that n necessarily is a multiple o 6 in the above and that, as 
was the case with 

0 1 2 

2 1 0 

(which is itself of course a clock), it is trivial to see that a clock cycles at 
period 3 independent of the outside. 

T h e o r e m  1.5. For the standard G H  or CCA model in two dimen- 
sions, a.s. (with respect to uniform product measure) for every x ~ Z  2, 
there will be a clock {Y~,Y2 ..... Y6,,} for qo, a time T, and a self-avoiding 
path { x =  Xo, x~ ..... x~} that intersects the clock precisely at x~ such that 
qr(Xi+~)=rIr(Xs)+l (mod 3) for i = 0  ..... 1 - 1 .  

We note that in the above, x will be periodic, cycling at period 3, after 
time T. In addition to of course implying Theorem 1.2, this gives a better 
description of what the final period-3 configuration looks like. 

With regard to using percolation in cellular automata, we mention 
ref. 12, in which percolation is used in an important way to analyze a 
cellular automation. 

The remainder of the paper is devoted to proofs. 

2. P R O O F S  

Throughout this section, we will only discuss the G H  model, since the 
proofs of the results for CCA are identical. We first generalize the notion 
of a clock that we introduced in Section 1 for the case of the standard G H  
model, a notion which we steal from ref. 10. 
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Defini t ion 2.1. A stable periodic object (spo) (relative to the 
parameters k, ./V', and 0) for a configuration ~/ is a finite set S of lattice 
points {x~ ..... x,,} such that for all i, 

[{y~Jg'(xi)nS:q(y)=q(x~)+ 1 (mod k)}l/>0 

Note that S being an spo for r/depends only on the restriction of q to 
S. The following lemma is obvious and explains the terminology "stable 
periodic object." 

L e m m a  2.2. If S is an spo for a configuration r/, then (under the 
Greenberg-Hastings dynamics with the relevant parameters) independent 
of the values of ~l outside S, lattice points in S will cycle at period k, 
increasing its value one unit (mod k) each time. 

Proof of Theorem 1.3. We carry out the proof only for d =2 .  The 
extension to d>~ 3 is trivial and left to the reader. As indicated in the intro- 
duction, the lattice points where the finite configuration 

1 0 1 

2 2 2 (2.1) 

1 0 1 

sits is an spo. Of course, since our initial distribution is uniform product 
measure, such an spo will exist somewhere in the initial configuration a.s. 
In view of the example given in Section 1, we cannot conclude that uniform 
asymptotic local periodicity is then achieved as a deterministic fact and so 
more probability is needed for the argument. 

Let ]Io be the union of all lattice points which are contained in an spo 
of the form (2.1) in the initial configuration qo. By Lemma 2.2, all lattice 
points in Yo from time 0 cycle at period 3 independent of the states of the 
rest of the lattice points. Let YI = Yow {x: IJV'(x)r Yol/>4}. Inductively, 
we let Yk+l = Y k  w {X: I,A/'(x) ~ Yd >/4} and then let Yoo = 0i~o Y;. 

We claim that any x in Y~. eventually cycles at period 3, which is 
easily proved by induction on k. Let x be in Yk +~ and assume that all lat- 
tice points in Yk eventually cycle at period 3. If x r Yk, then four neighbors 
of x will be in Yk and so, by assumption, by some time T, these four 
neighbors will be periodic, cycling at period 3. At this time T, two of these 
four neighbors, "say z t and zz, are always the same color, since there are 
only three colors. Now consider q(Zl ) - r / (x)  (mod 3) from time T onward. 
If x increases its value (mod 3), then this quantity remains unchanged, 
while if x stays fixed, then this quantity increases by 1 (mod 3). If x does 
not eventually cycle at period three, it will stay at least two time units at 
0 infinitely often. By considering the quantity rl(z~)-q(z) (mod 3) above, 
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it follows that there will then be some time after time T when r/(zi)= 
r/(x) + 1 (mod 3). At this point, x will also begin to cycle at period 3, since 
Zl and z2 will allow x to get from state 0 to state 1, giving a contradiction. 

We therefore need to show that Y~ = Z 2 a.s. let B = Y~, which is con- 
tained in Y~. Note that by its construction, B has the strange property that 
for all x in B, I J f f ' (x )n  BI >/5, where JV"(x)= JV'(x)\{x}. (There are eight 
neighbors altogether, so if x had fewer than five neighbors in B, then it 
would have at least four in Y~ and hence would have also been in Y~.) 

We call a set S 5-thick if for all x in S, IJff'(x) n SI/> 5. So B above 
is a 5-thick set contained in Y~. To finish the proof, we need to prove the 
following percolation proposition and apply it to the set B. II 

P r o p o s t i o n  2.3. The probability that there is a nonempty 5-thick 
set contained in Y; is 0. 

The next definition formulates the idea of a path around the origin 
which does not "stick in" anywhere or is (together with its interior) convex. 
What makes the proof of Proposition 2.3 work is that the number of such 
paths around 0 of length I is polynomial (as opposed to exponential) in L 

D e f i n i t i o n  2.4. A convex path around 0 is a path (see Defini- 
tion 1.1) Xo, xl ..... x,, =Xo which is self-avoiding (except for x,, = Xo) that 
goes clockwise around 0 (i.e., has winding number 1 around 0) and such 
that the induced path in R 2 (which is Xo, xl ..... x,,--Xo together with the 
line segments in the plane connecting subsequent points) together with the 
area in the plane that the path surrounds is a convex set in R 2. 

I_emma 2.5. Let S be a nonempty 5-thick set such that S contains 
no infinite rays and 0 r S. Then S contains a convex path around 0. 

Proof. If S n { ( x , y ) :  y = 0 } = ~ ,  let P=(Px,  Py) be any point in 
S n  {(x, y): y > 0} with minimum y coordinate. Since S is 5-thick and all 
points on the horizontal line immediately below p are not in S, it is easy 
to see that all points with the same y coordinate as p must be in S, 
contradiction the fact that S contains no infinite rays. 

If S n  {(x, y): y =  0} 4: ~ ,  we may assume that there is a point lying 
to the left of 0 (on the x axis) and we let z o be the closest point to 0 on 
the left. Let z~ be the first element of (Zo+ (1, 1), z0+ (0, 1), Zo+ ( - 1 ,  1)) 
which is in S [as S is 5-thick and Zo + (1, 0)r  S, one of these three points 
must be in S]. We construct a sequence (Zo, zl, z2,...) inductvely as follows. 
Intuitively, we build our path by going clockwise around 0, staying in S, 
always trying to move inward as much as possible. 

Consider the following ordered set of vectors: 

(1, 0), (1, --1), (0, - 1 ) ,  (--1,  --1), (--1,  0), (--1,  1), (0, 1), (1, 1) 
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which we call (%, v~,..., VT), where we consider them cyclically in the sense 
that (1, 0) follows (1, 1). These correspond to the directions the path we 
will construct can go in. To define zi+ 1, we consider the vector z ; - z i _  ~, 
which we assume is vj in the above list. We then take z~+~ to be the first 
element of (zi+vj+z, zi+vj+l, z~+vj) which is in S [where the indices 
j, j +  1, and j +  2 are of course taken (mod 8)]. As S is 5-thick and by the 
way we are building our path, one of these three will be in S. 

Since S contains no infinite rays, we will never get trapped into 
infinitely often choosing the last element of the above triple (which would 
correspond to continuing in the same direction forever). Therefore by 
observing that we could also start from Zo and go downward [by choosing 
the first o f z o + ( 1 , - 1 ) ,  Z o + ( 0 , - 1 ) ,  and z 0 + ( - 1 , - 1 )  which is in S] 
instead of upward, there must eventually be some repeated site (i.e., we 
cannot spiral out to ~ without repeating a lattice point). 

Since we have always taken the first element of the above triple, it is 
clear that Zo is the first repeated site and that the path we have constructed 
(by stopping when we return to Zo) is the desired convex path around 0. II 

L e m m a  2.6. Prob((0 ~ Yo)ca F ) >  0, where F is the event that there 
is no convex path around 0 contained in Y;. 

Proof. For N with 2 N +  1 a multiple of 3, let EN be the event that 
the obvious tiling of [ - N ,  N]  2 (where we mean of course by [ - N ,  N]  2 
the usual set [ - N ,  N]  2 in the plane intersected with the 2D integer lattice) 
by 3 x 3 squares has the property that 

1 0 1  

2 2 2  

1 0 1  

appears on each of these 3 x 3 squares in the initial configuration r/o. Since 
EN ca F___ (0 ~ Yo)ca F and P r o b ( E u ) >  0 for all N, we need to show that for 
some N, Prob(FCl EN) < 1. 

If ~, is a convex path around 0 of length L not intersecting [ - N ,  N]  2, 
then we can find L/IO points on y such that each of these points has a 3 x 3 
square not intersecting [ - N ,  N ]  2 in which it sits and such that these 3 x 3 
squares are pair.wise disjoint. Now, for this fixed ~,, if y _c y~, then on each 
of these L/IO 3 x 3 squares, the configuration is necessarily not 

1 0 1  

2 2 2  

1 0 1  
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Since the 3 x 3 squares are pairwise disjoint and disjoint from f - N ,  N] 2, 
it follows that  

Prob(7 ~ Y~ I EN) ~< [ 1 - -  fig)9"] L/IO 

Next, the number  of convex paths of length L around 0 is at most  L ~~ (an 
upper bound easily verified by looking at the places where the convex path  
changes its direction). It follows that 

Prob(FC l EN)<~ ~ LlO[ l_( �89  
L>~ N 

We now simply choose N large enough so that  this sum is < 1. I 

Proof of Proposition 2.3. Calling this event E, it suffices by 
ergodicity to show that P r o b ( E ) <  1. Letting G be the event that  Y~ 
contains no infinite ray, we clearly have P r o b ( G ) =  1, which implies by 
Lemma2 .6  that P r o b ( ( O ~ Y o ) n F n G ) > O ,  where F is defined in 
Lemma  2.6. Next Lemma  2.5 tells us that (0 e ]Io) n F n  G _  E c, which 
implies Prob(E)  < 1, as desired. I 

Before giving the proof  of Theorem 1.5, it is useful to make the following 
definition. 

Def in i t ion 2.7. We say that Xo is connected to on for r 1 if there is a self- 
avoiding path Xo, x , ,  x2 .... such that r/(xi+ 1) = r/(xi) + 1 (mod 3) for each i. 

Proof of Theorem 1.5. By Theorem 1.2, q3, , -  T3"rlo converges a.s. 
(in the product  topology),  where r/o is chosen from uniform product  
measure. Let q~. denote this random limit. We mention again that  if x is 
cycling at period 3 and y is a neighbor of x with q(x)= q (y )+  1 (mod 3), 
then y is also cycling at period 3. 

Let B,. be the event described in the theorem whose probabil i ty is 
claimd to be 1, where we write B for Be. By translation invariance, we 
need to show that P r o b ( B ) =  1. We now define A to be the event that 0 is 
connected to ov for the configuration q~.  We will show P r o b ( B ) =  1 by 
proving that Prob(A w B) = 1 and Prob(A)  = 0. 

We first note that for every x s Z z, there is a neighbor y of x such that  
q~(y)  = q~ ( x ) +1  (rood 3). This is clear since otherwise when x becomes 
0, it would not have a 1 next to it to ensure its advancing by 1. Next,  con- 
struct a sequence of lattice points as follows. Let xo = 0, xj be a neighbor 
of Xo such that ~1~(x~)=q~(Xo)+ 1 (mod 3), xz be a neighbor of xl such 
that q~ , ( x2 )=q~(X l )+ l  (mod3) ,  and so on. If all these points are 
distinct, we are then in event A. If, on the other hand, there is a repeat, let 
xi and Xi be the first pair of points in the sequence which are the same. 
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Then (x;, x;+l  ..... x j_ l )  is clearly a clock for r/~ (see Definition 1.4). One 
can show (see ref. 3 or the earlier ref. 8 for the analogous result for CCA) 
that this implies that (xi,  x i+l  ..... x j_  ~) is also a clock for qo. The argument 
is as follows. If (xi,  x i+l  ..... x j _ l )  is a clock for q~ ,  then clearly 
(xi,  xi+~ ..... x j_  t) is also a clock for q~ for some large/.  We next claim that 
it follows that (x~,x~+) ..... x~i_l) is also a clock for r// ~, which gives the 
desired result by induction. Certainly all the 2's ( l 's)  in (x~, xi+L ..... xj_ 1) 
at time l are l 's (O's) at time 1 - 1 .  Now, if some 0 at time 1 in 
(xi,  xi+~ ..... x j _ l )  was a 0 at time l - 1 ,  then it would have sat next to a 
1 at time l - 1  (since it sat next to a 2 at time l) and hence would have 
been a 1 at time l, giving us a contradiction. Hence the 0 at time l 
must have been a 2 at time I - 1 ,  showing that (x~,x~+~ ..... x j _ l )  was a 
clock at time / - 1 .  This shows that (x~, x~+l ..... xj_ ~) is a clock for go, as 
desired. We are therefore in event B, where we take T to be large enough 
so that Xo, xl ..... x j_ l  have all reached periodicity by time T. Hence 
Prob(A w B) = I. 

To show P r o b ( A ) =  0, we now need the following lemma, whose proof  
will be given later. 

kemma 2.8. Let U be the event that 0 is connected to ~ for the 
configuration qo. Then P r o b ( A ) =  0 if and only if Prob( U) -- 0. 

The event U is a type of dependent oriented bond percolation problem 
that can be formulated as follows. Throw down O's, l's, and 2's at random 
on the lattice with a uniform product  measure. An arrow is then draw from 
a to b if ] [a-b[[ l  = 1 and b = a +  1 (mod 3). Clearly, for each pair a and b 
with [ [ a -b ] [~=  1, there is an arrow from a to b with probability 1/3, there 
is an arrow from b to a with probability 1/3, and there is no arrow at all 
between a and b with probability 1/3. Then U is the event that there is a 
self-avoiding oriented path from 0 to ~ .  It is well known (and easy to 
prove) that the number  of self-avoiding paths of length n in two dimensions 
starting from the origin, which we call a,,, is ~<Kc" for positive constants 
K and c with c < 3. Next, it is clear that al though the arrows are not inde- 
pendent, the probability that a particular self-avoiding path ~, of length n 
starting from the origin has the property that qo increases one value 
(rood 3) at each step as we transverse 7 starting from the origin is 1/3". 
Hence P r o b ( U ) ~ < a , - 1 / 3 " ~ K c " .  1/3" for all n. As c < 3 ,  we have that 
Prob(U)  = 0 and so P r o b ( A ) =  0 by Lemma 2.8, as desired. | 

P r o o f  o f  L e m m a  2.8. Clearly, U~_A and so one direction is easy. 
We assume that P r o b ( U ) =  0. If 0 is connected to ~ for r/,,, one can easily 
show that there must be some lattice point x (with L 1 distance at most n 
from 0) such that x is connected to ~ for qo. Now this latter event occurs 
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with probabi l i ty  0 by the t ransla t ion invariance and the fact that  
P r ob (U)  = 0 .  Hence Prob(0  is connected to 0o for r/,,) = 0  for all n. We now 
only need to show that  A ~_ U,,~o {0 is connected to 0o for r/,,}. 

Assume there exists a self-avoiding pa th  0 = X o ,  X~ .... such that  
r /~ (x i+~)=r /o~ (x i )+  1 (mod 3) for all i. By Theorem 1.2, there is a.s. an 
integer N such that  lattice point  0 cycles at per iod 3 from time N onward.  
We claim then that  0 is connected to ~ for r/N. 

To see this, we know that  0 is cycling at  per iod 3 after t ime N. If 
rtN(x~) were one less ( m o d 3 )  than r/N(Xo), it would stay one less, 
cont radic t ing  r/oo(x~)=r/o~(Xo)+ 1. If r/N(xl) were there same as r/jv(Xo), 
then the two will either stay the same as each other  or the value at x~ will 
d rop  one behind and stay one behind, in either case again contradic t ing  
r / o ~ ( x l ) = r / ~ ( X o ) + l .  So r/,v(Xl) must  be one higher than r/N(Xo) and 
the same argument  shows it must  also always stay one ahead and hence 
must  also be cycling at per iod 3. By induct ion,  one gets that  r /N(x;+~)= 
r / N ( x ; ) + l  ( m o d 3 )  for all i and so 0 is connected to oo for r/N, as 
desired. II 
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